NEW SOLUTIONS OF $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$

PETER L. MONTGOMERY

Dedicated to the memory of my undergraduate advisor, D. H. Lehmer

Abstract. We tabulate solutions of $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ where $2 \leq a \leq 99$ and where p is an odd prime, $p<2^{32}$.

1. Introduction and summary

Some number-theoretic questions such as Fermat's conjecture [4] require primes p satisfying

$$
\begin{equation*}
a^{p-1} \equiv 1 \quad\left(\bmod p^{2}\right) \tag{1}
\end{equation*}
$$

for given a not a power. Brillhart, Tonascia, and Weinberger [2] list all solutions of (1) for $2 \leq a \leq 99$ and $3 \leq p<10^{6}$, plus some solutions for higher p. Lehmer [3] subsequently extended the $a=2$ search to $p<6 \cdot 10^{9}$, finding only the known solutions $p=1093$ and $p=3511$. Aaltonen and Inkeri [1] list solutions for prime $a<1000$ and $p<10^{4}$. Table 1 (next page) extends the table in [2] to $p<2^{32}$, giving 23 new solutions. Included are the first solutions for $a=66$ and $a=88$.

The table in [2] identifies where (1) holds modulo p^{3}, with the only solutions for $a \leq 99$ and $p>7$ being $(a, p)=(42,23)$ and $(68,113)$. This search found no more such solutions.

The pair $(a, p)=(5,1645333507)$ satisfies $p^{a-1} \equiv 1\left(\bmod a^{2}\right)$ as well as (1). This supplements the pairs $(2,1093),(3,1006003)$, and $(83,4871)$ listed in [1, p. 365].

The largest known p for which multiple a satisfy (1) with $2 \leq a \leq 99, a$ not a power, is $p=331$, for which $a=18$ and $a=71$ satisfy (1).

The Fibonacci sequence is defined by $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. If $p \neq 5$, then $F_{p-\epsilon} \equiv 0(\bmod p)$, where $\epsilon=+1$ if $p \equiv \pm 1$ $(\bmod 5)$ and $\epsilon=-1$ if $p \equiv \pm 2(\bmod 5)$. Williams [5, pp. 85-86] reports no solution of $F_{p-\epsilon} \equiv 0\left(\bmod p^{2}\right)$ with $p<10^{9}$. This search found no such solution with $p<2^{32}$.

[^0]Table 1. Solutions of $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$ with $2 \leq a \leq 99$ and $3 \leq p<2^{32}$. New solutions are in bold font

a	Values of p	a	Values of p
2	10933511	55	3301097278001
3	111006003	56	6477079771
5	2077140487534711611645333507	57	54769986197
6	661615348513152573	58	13142250279
7	5491531	59	2777
10	348756598313	60	29
11	71	61	
12	2693123653	62	$\begin{array}{lllll}3 & 19 & 127 & 1291\end{array}$
13	8631747591	63	$\begin{array}{lllllll}23 & 29 & 36713 & 401771\end{array}$
14	29353	65	17163
15	29131	66	89351671
17	34602148947	67	747268573
18	$\begin{array}{llllllll}5 & 7 & 37 & 331 & 339231284043\end{array}$	68	
19	$\begin{array}{llllllll}3 & 7 & 13 & 43 & 137 & 63061489\end{array}$	69	$\begin{array}{llllll}19 & 223 & 631 & 2503037\end{array}$
20	281464579377747122959073	70	13142963
21		71	347331
22	$13 \quad 6731595813492366587$	72	
23	$13 \quad 248175713703077^{1}$	73	3
24	525633	74	5
26	$3 \mathrm{~S}^{5} 71486999673$	75	$\begin{array}{lllll}17 & 43 & 347 & 31247\end{array}$
28	$319 \quad 23$	76	515711099241661049
29		77	32687
30	7160541	78	$\begin{array}{lllllllll}43 & 151 & 181 & 1163 & 56149 & 4229335793\end{array}$
31	77964512806861	79	$\begin{array}{llllll}7 & 263 & 3037 & 1012573 & 60312841\end{array}$
33	23347441	80	$\begin{array}{lllll}3 & 7 & 13 & 6343\end{array}$
34		82	35
35	316133571	83	487113691315746063
37	377867	84	16365320101
38	17127	85	11779
39	8039	86	68239
40	$\begin{array}{llllll}11 & 17 & 307 & 66431\end{array}$	87	199948121
41	291025273138200401	88	2535619637
42	23	89	313
43	5103	90	
44	32295851	91	3293
45	1283131759157635607	92	$\begin{array}{llllllll}727 & 383951 & 12026117 & 18768727 & 1485161969\end{array}$
46	3829	93	$5 \quad 509922181551$
47		94	11124132143463033
48	7257	95	213715061
50	7	96	1095437832912925267
51	541	97	72914393
52	4611228488439	98	32862761001527
53	$3 \quad 47 \quad 5997$	99	$\begin{array}{llllll}5 & 7 & 13 & 19 & 83\end{array}$
54	191949		

${ }^{1}$ Incorrectly printed as "1370377" in [2].

2. Programming considerations

As in [2] and [3], it suffices to compute the last two digits of the base p representation of each intermediate result. Since (1) is equivalent to $a^{(p-1) / 2} \equiv$ $\pm 1\left(\bmod p^{2}\right)$, we can save a squaring $\bmod p^{2}$.

The programs in [2] fixed the base a and looped through values of p. One can instead check all values of a together for a given p. Then the value of $a^{(p-1) / 2}\left(\bmod p^{2}\right)$ need be calculated the long way (binary method of exponentiation) only for prime a : if $a=a_{1} a_{2}$ where

$$
a_{1}^{(p-1) / 2} \equiv \pm\left(1+p b_{1}\right) \quad\left(\bmod p^{2}\right) \quad \text { and } \quad a_{2}^{(p-1) / 2} \equiv \pm\left(1+p b_{2}\right) \quad\left(\bmod p^{2}\right)
$$

then $a^{(p-1) / 2} \equiv \pm\left(1+p\left(b_{1}+b_{2}\right)\right)\left(\bmod p^{2}\right)$. The latter computation reduces to an addition modulo p. Since $\pi(100)=25$ whereas there are 87 nonpowers below 100 , this represents a potential 70% savings.

The search for $p<2^{31}$ was done on a DECstation 3100 (MIPS architecture). To compute a product $a b \bmod p$ where $0 \leq a, b<p$ but where $a b$ may exceed the largest single-precision integer, the program computed $q=a \cdot b \cdot \frac{1+\epsilon}{p}$, using floating-point arithmetic, where $2^{-50} \ll \epsilon \ll 1 / p$. The relative error in any floating-point computation is at most 2^{-52} (53-bit mantissas), ensuring that

$$
\frac{a b}{p} \leq q \leq \frac{a b}{p}(1+1 / p)<\frac{a b}{p}+1
$$

and hence that $\left\lfloor\frac{a b}{p}\right\rfloor \in\{\lfloor q\rfloor,\lfloor q\rfloor-1\}$; the choice is made using the sign of $r=a b-p\lfloor q\rfloor$. Since $-2^{31}<-p \leq r<p<2^{31}$, this r can be computed by integer arithmetic modulo 2^{32}.

This technique fails for $p>2^{31}$ unless the program uses 64-bit arithmetic to compute the tentative remainder (it would also require converting unsigned 32bit integers to/from floating point). Instead, the computations for $p>2^{31}$ were done on a NeXT with a Motorola 68040 chip. The 68040 can divide a 64 -bit unsigned integer by a 32-bit unsigned integer, obtaining quotient and remainder in one instruction (if the quotient does not overflow), but the MIPS architecture lacks such. The 3100 tried all primes in an interval of length 10 million per hour. The 68040 computations took slightly longer, searching an interval of length 7 million per hour.

Bibliography

1. M. Aaltonen and K. Inkeri, Catalan's equation $x^{p}-y^{q}=1$ and related congruences, Math. Comp. 56 (1991), 359-370.
2. J. Brillhart, J. Tonascia, and P. Weinberger, On the Fermat quotient, Computers in Number Theory (A. O. L. Atkin and B. J. Birch, eds.), Academic Press, London and New York, 1971, pp. 213-222.
3. D. H. Lehmer, On Fermat's quotient, base two, Math. Comp. 36 (1981), 289-290.
4. Daniel Shanks and H. C. Williams, Gunderson's function in Fermat's last theorem, Math. Comp. 36 (1981), 291-295.
5. H. C. Williams, The influence of computers in the development of number theory, Comput. Math. Appl. 8 (1982), 75-93.

Department of Mathematics, Oregon State University, Corvallis, Oregon 973314605

E-mail address: pmontgom@math.orst.edu

[^0]: Received by the editor June 21, 1991.
 1991 Mathematics Subject Classification. Primary 11-04; Secondary 11D61.
 Key words and phrases. Diophantine equation, Fermat quotient, Fibonacci congruence.
 This work was supported by U.S. Army fellowship DAAL03-89-G-0063. Thanks to the Department of Mathematics at UCLA and to my graduate advisor David G. Cantor for supplying the computers on which this work was done.

